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ABSTRACT 

The breitfussins are highly modified halogenated marine alkaloids, containing an 

unprecedented indole-oxazole-pyrrole structure and breitfussin A is only known iodo-

oxazole containing the natural product. Due to lack of enough information from conventional 

tools like NMR, mass spectroscopy, and IR, their structures were determined by an unusual 

application of atomic-force microscopy (AFM) along with other computational tools.  

 In the absence of selective halogenation on oxazole-pyrrole containing a molecular 

frame, the site-selective halogenation was studied on the model compound of breitfussins. It 

has been found that the oxazole and pyrrole rings proved to be comparably reactive towards 

electrophilic halogenation by N-chlorosuccinimide (NCS), N-bromosuccinimide (NBS), N-

iodosuccinimide and iodine-monochloride (ICl).  Solvent and protecting group selection 

were found to be an effective means of tuning the halogenation site selectivity. The 

iodination site selectivity was controlled with the help of protecting group while acetone 

favoring oxazole bromination and pyridine favoring the pyrrole bromination. This tunable 

site-selective halogenation was used in the synthesis of breitfussin A by using only one 

protecting group in 14 steps with 6.5% overall yield and a protecting group-free synthesis of 

breitfussin B that proceeded in 9.2% yield over 12 reactions steps. A bromo-oxazole analog 

of breitfussin A was also prepared by late-stage bromination but isomerized on silica gel to 

form breitfussin B.  This isomerization appeared to proceed through a unimolecular pathway. 
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CHAPTER 1. NATURAL PRODUCTS IN PHARMACEUTICALS, TOTAL 

SYNTHESIS AND STRUCTURE REASSIGNMENT, BREITFUSSINS (A AND B) 

AND STRUCTURE ASSIGNMENT 

 

1.1 Natural Products in pharmaceutical 

 

Nature has been a great source of various chemical entities. It stands as a vast 

resource for various chemicals. These chemicals have been used in different fields of 

daily life. Some of the chemical obtained from nature are termed as natural products. 

Natural products are small molecules produced naturally by an organism including 

primary and secondary metabolites.1 They include very small molecules, such as urea,2 

and complex structures, such as Taxol.3 As they may only be isolable in small 

quantities, have interesting biological activity and chemical structures, natural product 

synthesis poses an interesting challenge in organic chemistry. One of the most 

important aspects, in which natural products have made a huge impact, is treatments of 

diseases. These compounds have not only saved millions of lives over the years but also 

improved the standard of living on this planet. For example, penicillin was discovered 

during World War II, and it saved millions of life over the time. Similarly, quinine was 

also useful in saving millions of lives.4   

Natural products have been the backbone of traditional medicine throughout the 

globe and dates backs to hundreds and thousands of years. The man has searched for 

cures of illnesses by chewing herbs, berries, roots and barks. These compounds were used 

as herbal medicine without isolating and characterizing the active compounds in it. Some 

of these trials were very successful and useful. In last 100 - 150 years, with the 
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advancement of technology, people started to look for bioactive compounds in traditional 

medicine. Since then, natural products have been as part of medicine as an identified and 

characterized bioactive molecules.5-8 

On a rough estimate, it has been found that approximately over half of the 

pharmaceutical compounds used in clinic today are derived from the natural products.9 

Some well-known natural product derived drugs which are being used in modern 

pharmaceutical care includes quinine,10 theophylline,11 penicillin G,12 morphine,13 

paclitaxel,3 digoxin, vincristine, doxorubicin, cyclosporine and vitamin A among many 

other examples.14 The structures of few of them are given.  

  

 

 

Figure 1.1. Molecular structures of some natural products in pharmaceuticals  
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1.2 Total Synthesis and Structure Reassignment 

 

 The complete chemical synthesis of a complex molecule, often a natural product, 

from simple, commercially available precursors is called Total Synthesis. It is a process 

which does not involve the aid of biological process. If the synthesis of the natural 

product involves the aid of biological process, it is called semisynthesis. There are 

various aspects of total synthesis that is valuable to the chemistry and society. In some 

cases biologically intriguing natural products can be obtained only in a small amount 

from the natural resources or their extraction and purification from natural sources can be 

very expensive and time-consuming.15,16 Total synthesis can enable the production of 

such compounds on a larger scale to facilitate further extensive biological investigations 

and medical applications.  Sometimes these natural products can be synthesized from a 

commercially available simple molecule in the laboratory or in a chemical plant in the 

more cost-effective process than extracting and purifying it from nature. Thus total 

synthesis makes use of such natural product economically more feasible and desirable. 

 In most cases, the development of the natural product as medicine requires a 

change in the structure of natural products to enhance its potency17 or improving its 

selectivity towards the target.18 It also enables the way to improve HSA binding, physical 

and chemical properties.17 Most of the time such modification leads to superior 

pharmacological properties than those possessed by the natural products by themselves in 

terms of efficacy and safety.19 

 One of the fundamental aspects of the total synthesis of the natural product is to 

provide the absolute proof of the assigned structures.20 The structural determination of 
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new natural product is very important for many disciplines. The structural assignment is 

very important in DMPK study of compounds. It may lead to new therapeutic agents or 

new understanding of disease biology.21 With the advancement of new analytical tools 

for structure elucidation like NMR, IR, and X-ray, the role of the total synthesis in 

structure elucidations is probably underappreciated by most chemists today.22  Despite 

many advances in analytical tools for structure elucidation, there are many examples in 

literature where assigned structures of natural products were incorrect, and it was 

corrected by the total synthesis. Almost 40% of the structure of natural products is 

reassigned by the help of the total synthesis. The recent notable examples, where 

structures of natural products were mischaracterized includes diazonamides (an incorrect 

structure determination by X-ray!),23,24 cylindrospermopsin,25 the sclerophytins,26 

batzelladine F,27 and Azaspiracid (1, 2, and 3) 28-31  (Figure 1.2). In all cases, structures 

were correctly reassigned by the total synthesis of molecules. Similarly, the natural 

product yuremamine was isolated from the stem bark of Mimosa hostilis in 2005 by 

Callaway and co-workers.32 The structure of yuremamine, originally proposed to be the 

densely functionalized dihydropyrroloindole 15 with three contiguous stereogenic 

centers, but after the total synthesis of compound, it was revised to the flavonoidal indole 

16 by Sperry and co-workers.33 
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Figure 1.2. Molecular structures of some natural products reassigned by total synthesis  
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1.3 Breitfussin A and B and its structural assignment 

 

 In an effort to find new class of antibiotic, K. Ø. Hanssen et al. isolated 

breitfussin A and B (17 and 18, Figure 1.3) from the Arctic coral-like animal, Thuiaria 

bretfussi collected at Bjørnøya near Bear Island, Norway.34 The structure elucidation of 

these compounds was found to be difficult. Since these compounds were only available in 

small amounts, preventing structure determination by x-ray crystallography. From 

standard techniques of mass spectrometry, NMR, IR, and UV, isolation chemists were 

able to identify indole, oxazole, and pyrrole unite but could not put them together to get 

the final structure. To determine the final structure, they took atomic-force microscopy 

(AFM)35-37 image of the molecule (Figure 1.4) and overlaid the predicted structure of 

molecule obtained from computational tools38 (Figure 1.5) on the AFM image. They 

identified that breitfussins are highly modified halogenated dipeptide, composed of an 

unusual molecular framework of indole, oxazole, and pyrrole (Figure 1.3). Also, 

breitfussin A is only known natural product with iodo-oxazole unite. Structure of the 

breitfussins to be related to the phorbazoles.39,40 Since this type of structure 

determinations are prone to miss an assignment; it needed final proofing of structure by 

total synthesis. Recently, Hedberg, Bayer, and coworkers synthesized breitfussins A and 

B using Suzuki coupling reactions to join the heteroaromatic rings, thus confirming the 

assigned structure of natural products.41, 42 
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Figure 1.3. Structure of breitfussin A and B 

 

 

 

 

Figure 1.4 (a). AFM image of breitfussin A34 
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Figure 1.4 (b). AFM image of breitfussin A is overlaid with predicted structure34 
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CHAPTER 2. SYNTHESIS OF BREITFUSSINS ANALOG AND SELECTIVE 

HALOGENATIONS 

 

Part of this chapter has been published in Organic Letters Journal especially work on 

bromination on breitfussins analog, For reference, please see:  

Khan, A. K.; Chen, J. S. Org. Lett. 2015, 17, 3718. 

 

2.1 Introduction 

 

 Breitfussin A and B (Figure 2.1) are a series of highly modified halogenated 

dipeptide with very rare molecular framework alkaloids isolated from marine organism 

Thuiaria bretfussi.1 The structure determination of these compounds was not possible by 

NMR, MS and IR analysis because of a low number of hydrogen atoms. The atomic-

force microscopy (AFM)2-4 and computational tools5 were called upon to complete the 

assignment. This unprecedented application of AFM revealed breitfussins A and B to be 

unusual oxazole–pyrrole natural products related to the phorbazoles.6,7 Of note, 

breitfussin A is the only known naturally-occurring iodooxazole. Synthetic validation of 

the assigned structures is a high priority because of the promising capability of AFM as a 

structure elucidation tool. 

 Although site-selective halogenations of aromatic heterocycles such as pyrroles8 

and oxazoles9 are well-studied, comparatively little is known about selectivity in 

substrates containing multiple aromatic heterocycles. Surprisingly, a SciFinder search 

revealed no examples of pyrrole or oxazole halogenation (selective or otherwise) on a 

substrate containing both ring systems!10,11 This absence of literature on selective 
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halogenation on substrates containing multiple aromatic heterocycles gave us an 

opportunity to develop site-selective halogenation which could be utilized for the 

synthesis of breitfussins (A and B) and could apply to other similar systems. Here we 

have used the model compound to carry out selective halogenation.12  

  

 

 

Figure 2.1. Structure of breitfussin A and B 

 

 

2.2 Synthesis of a Model Compound 

 

 Here we envisioned synthesis of the central model compound 23 from substituted 

tryptamine 19 and 2-(trichloroacetyl)pyrrole (20) as high oxidation state surrogates for 

tryptophan and proline. 

Synthesis of breitfussin model compound 23 (Scheme 1) commenced with the 

reaction between tryptamine (19) and 2-(trichloroacetyl)pyrrole (20) to afford pure amide 

21 with out purification in quantitative yield. DDQ-promoted heterobenzilic oxidation12 

of amide 21 in THF and water (9:1)  mixture gave ketone amide 22 in 84% yield. A 

subsequent cyclization was carried out by dehydration of ketoamide 22 in the presence of 
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phosphoryl chloride (Robinson-Gabriel oxazole synthesis) to deliver oxazole 23 in 83% 

yield. The yield of oxazole formation is very affected by impurity in ketoamide which has 

a nonlinear effect. To get the reproducible yield, ketoamide must be purified carefully 

because the by-product of DDQ present as an impurity is 1H NMR silent which can be 

detected by 13C NMR. 

 

Scheme 2.1. Synthesis of model compound 23
[a] 

 

 

 

[a] Reagents and conditions: a) 20 (1.02 equiv), DMF, 50 °C for 3 h, 100%; b) DDQ (2.0 

equiv) THF: H2O (9:1) 0 °C for 4 h, 84%; c) POCl3 in pyridine (1:5) dropwise over 5 

minutes at 0 °C for 1.5 h then to 23 °C for 1.5 h, 83%; DDQ = 2,3-dichloro-5,6-dicyano-

1,4-benzoquinone. 

 

2.3 Selective bromination of Model Compound 

 

For the study of bromination on breitfussin model compound 23, N-

bromosuccinimide (NBS) was selected as a convenient source of electrophilic bromine. 

Bromination of model compound 23 in acetonitrile (Table 1, entry 1) was sluggish but 
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yielded a high amount of dibrominated product 26 even at very low conversion. The 

presence of high amount of dibromainted product suggests that rate of the second 

bromination is higher than the rate of the first bromination. Although we were concerned 

about the possibility of competitive bromination at C4″ on the pyrrole, all of the pyrrole 

bromination proceeded at the C5″ position.  

 Speculating that the higher acetonitrile solubility of the monobromide product 

(24) as compared with its precursor (23) may be promoting a faster second bromination,13 

we switched solvents to THF (Table 2.1, entry 2). The second bromination still appeared 

to be faster than the first, but not by as large a margin. Interestingly, monobromination 

now proceeded at both the pyrrole and the oxazole at comparable rates.This comprable 

rate of bromination also suggests that reactivity of pyrrole and oxazole rings are very 

close and can be altered to get selectivity. To slowdown the second bromination, we ran 

the reaction in acetone (Table 2.1, entry 3) because of the even higher solubility of model 

compound 23 in this solvent. This simple change not only reduced the extent of over 

bromination but also enhanced the selectivity for bromooxazole 25. Emboldened by this 

result, we decided to screen other solvents in the hope of achieving selective pyrrole 

bromination. We speculated that solvents that can strongly interact with either the 

nitrogen lone pair of the oxazole ring or the acidic hydrogen of the pyrrole ring likely 

offered the best hope of altering the bromination selectivity. Bromination in acetic acid 

(Table 2.1, entry 4) gave a complex mixture of products. Use of pyridine as solvent 

(Table 1, entry 5) shut down oxazole bromination but led to low mass recovery after 

aqueous workup and a low isolated yield of bromopyrrole 24. Speculating that mixture of 

pyridine and NBS might be causing the decomposition of product and a low mass 
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recovery after the reaction. We switched to a 19:1 THF: pyridine as a solvent mixture 

(Table 2.1, entry 6) which delivered bromopyrrole 24 in a satisfying 77% yield.11 

 

Table 2.1.  Bromination study on model Compound 23 

 

 

 

Entry Equiv NBS Solvent Ratio 23:24:25:26
a Yieldb (%) 

1 1.0 Acetonitrile 82:5:0:13 ND 

2 1.0 THF 68:10:14:8 ND 

3 3.0 Acetone 5:12:55:28 45 (25) 

4 1.0 Acetic acid NDc ND 

5 1.1 Pyridine 24:76:0:0 34 (24) 

6 1.2 THF:Pyridine 

(19:1) 

16:84:0:0 77 (24) 

a Estimated by 1H NMR analysis. b Isolated yield of the major product. c Low 

conversion to a complex mixture. ND = not determined. NBS = N-Bromo succinamide. 

 

2.4 Synthesis of 4-bromopyrrole Model Compound 

 

 We have not tuned the bromination of model compound 23 to deliver 4-

bromopyrrole 30 (Scheme 2.2). Bromination of the C4 position of 2-
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(trichloroacetyl)pyrrole (20) has been reported in the literature, and it has been found to 

be the most reactive towards bromination with NBS. To avoid any possibility of 

mischaracterization of 4-bromo-pyrrole 30 as 5-bromo-pyrrole 24, we synthesized 4-

bromo-pyrrole 30  by using commercially available 4-bromo-2-(trichloroacetyl)pyrrole 

(20). The reaction between tryptamine 19 and 4-bromo-2-(trichloroacetyl)pyrrole 20 

produced amide 28 in 89% yield. DDQ-promoted heterobenzilic oxidation11 of amide 28 

in THF and water (9:1)  mixture gave bromo-ketoamide 29 in 77% yield. A subsequent 

cyclization was carried out by dehydration of bromo-ketoamide 29 in the presence of 

phosphoryl chloride (Robinson-Gabriel oxazole synthesis) to deliver 4-bromopyrrole 30 

in 66% yield. On comparison, the NMR of 5-bromopyrrole 24 and 4-bromopyrrole 30 

were found to be different, and a differential NOE was used to confirm the structure of 5-

bromopyrrole 24. 

  

Scheme 2.2. Synthesis of model compound 30
[a] 

 

 

[a] Reagents and conditions: a) 27 (1.02 equiv), DMF, 50 °C for 3 h, 89%; b) DDQ (2.0 

equiv) THF: H2O (9:1) 0 °C for 6 h, 77%; c) POCl3 in pyridine (1:5) dropwise over 5 

minutes at 0 °C for 1.5 h then to 23 °C for 1.5 h, 66%; DDQ = 2,3-dichloro-5,6-dicyano-

1,4-benzoquinone. 
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2.5 Selective Iodination of Model Compound 23 

 

 Having a successfully developed method to carry out selective bromine 

selectively at different sites, we turned our attention to iodination. Model compound 23 

was reacted with NIS in acetone, but it resulted in decomposition of starting material with 

out formation desired iodo-oxazole 32 (Table 2.2, entry 1). Reaction in acetic acid again 

produced an inseparable mixture. When the model compound was reacted with NIS in 

pyridine, we encountered the similar problem of low mass recovery as in bromination 

resulting in low yield 28% of iodo-pyrrole 31 (Table 2.2, entry 3). After switching to 

THF: pyridine (19:1) solvent, the yield of iodo-pyrrole 31 (Table 2.2, entry 4) improved 

to 40% but was not at the level to the yield of bromo-pyrrole 24. Here we also explored 

the possibility of using molecular iodine as an electrophilic iodine source. The molecular 

iodine was found to be unreactive.13 
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Table 2.2.  Iodination study on model Compound 23 

 

 

 

Entry Equiv NBS Solvent Ratio 23:31:32:33
a Yieldb (%) 

1 3.0 Acetone Decomposition ND 

2 1.0 Acetic acid Complex mixture ND 

3 1.5 Pyridine 28:72:0:0 28 (31) 

4 1.5 THF:Pyridine 

(19:1) 

35:65:0:0 40 (31) 

 

a Estimated by 1H NMR analysis. b Isolated yield of the major product. ND = not 

determined. NIS = N-iodo succinamide. 

 

 In light of these difficulties, we opted to modify the substrate. As shown in 

Scheme 2.3, Boc protection of model compound 23 proceeded in 84% yield to furnish N-

Boc-oxazole 34, but this led to an increase in pyrrole reactivity;14 The reaction of N-Boc-

oxazole 34 with NIS afforded N-Boc-5-iodopyrrole 35 in 70% yield, and subsequent 

deprotection with TFA resulted in the formation of 5-iodopyrrole 31 (breitfussin B 

analogue) in 90% yield. 

  To avoid the electronic influence of a carbamate, model compound 23 was 

converted into TIPS-protected analog 36 in 88% yield (Scheme 2.4). Oxazole 
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deprotonation by tBuLi and trapping with molecular iodine15 and subsequent deprotection 

with TBAF resulted in the formation of iodooxazole 32 (breitfussin A analog) in 67% 

yield over 2 steps. 

 

 

Scheme 2.3. Synthesis of model 5-iodopyrrole 31
[a] 

 

 

[a] Reagents and conditions: a) (Boc)2O (3.00 equiv), DMAP (0.10 equiv), THF, 23 °C for 

1 h, 84%; b) NIS (2.20 equiv) CH2Cl2, 23 °C for 24 h, 70%; c) CH2Cl2:TFA (9:1), 23 °C 

for 3.0 h, 90%; (Boc)2O = Di-tert-butyl dicarbonate; DMAP = 4-Dimethylaminopyridine; 

TFA = Trifluoroacetic acid. 
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Scheme 2.4. Synthesis of model compound 32
[a] 

 

 

 

[a] Reagents and conditions: a) NaH (3.0 equiv), DMF, 0 °C for 20 min then TIPCl then 

23 °C for 1.0 h, 88%; b) tBuLi (3.0 equiv) THF, −40 °C for 30 min then I2 (5.0 equiv), c) 

TBAF (3.2 equiv) THF at 0 °C for 10 min, 67% over 2 steps; TIPCl = Triisopropylsilyl 

chloride; TBAF = Tetra-n-butylammonium fluoride. 

 

2.6 Selective Iodination of N-TIPS Compound 33 with Iodine Monochloride (ICl) 

 

 Although we were able to install iodine in a model compound on pyrrole and 

oxazole to produce 5-iodopyrrole 31 and iodooxazole 32 (breitfussin A analog) by two 

different methods, using NIS, and deprotonation followed by trapping with molecular 

iodine respectively. The synthesis of breitfussin A (17) by using this deprotonation 

method had a rare chance of success because of metal halogen exchangeable bromine 

was present on indole of breitfussin A. Due to the obstacle of bromine on indole of 

breitfussin A, a new method to place iodine on oxazole was warranted. 

 To install iodine directly on oxazole, we envisioned to block reactive the C5″ 

position of model compound 23 by placing bulky TIPS group on pyrrole. The reaction on 
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N-TIPS Compound 36 with iodine monochloride (ICl)51 in THF: pyridine (19:1) led the 

formation of 5-iodopyrrole 31 as a major product along with N-TIPS iodooxazole 37 

(Table 2.3, entries 1–4). We speculated that acidic nature of ICl might be causing the 

deprotection of N-TIPS at first and subsequent iodination on pyrrole furnishing 5-

iodopyrrole 31. To block the deprotection caused by the acidity of reaction mixture we 

used 1:1 mixture of THF and pyridine as a solvent. This led to the formation of desired 

N-TIPS iodooxazole 37 in 76% yields which were subsequently converted to iodooxazole 

32 by using TBAF in 96% yield.  

 

Table 2.3.  Iodination of N-TIPS Compound 36 with ICl 

 

 

 

Entry Equiv ICl Solvent Ratio 36:31:37:38
a Yieldb (%) 

1 2.0 Acetone Decomposition ND 

2 2.0 Acetic acid Complex mixture ND 

3 2.0 THF:Pyridine 
(19:1) 

15:55:30:0 35 (31) 

4 2.0 THF:Pyridine 

(1:1) 

5:0:95:0 76 (37) 

     
a Estimated by 1H NMR analysis. b Isolated yield of the major product. ND = not 

determined. ICl = Iodine monochloride. 
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2.7 Mechanistic Role of Acidic N-H Hydrogen in Selectivity 

 

 We also investigated the reaction of N-methylated model compound 35 with NBS 

in an attempt to shed some light on the reasons for the observed solvent-dependent 

bromination site selectivity (Table 2.4, entries 1–4). In our bromination study on model 

compound 23, we found that reactivity of pyrrole and oxazole were very close towards 

nucleophilic bromination. We thought that hydrogen bonding of acidic N-H on pyrrole 

with pyridine might be playing a crucial role in selectivity and substitution of acidic 

hydrogen should lead to loss of selectivity. On the reaction of the N-methylated model 

compound, 38 with NBS resulted in nonselective bromination. The site selectivities of the 

bromination reactions run in acetone and THF: pyridine are at odds with those observed 

for N-unmethylated model compound 23; this indicates that acidic N-H hydrogen on 

pyrrole is very crucial to get selectivity. But more studies will be required to elucidate the 

mechanistic role of pyridine in the selective formation of bromopyrrole 24. In place of 

pyridine other organic bases like DMAP, imidazole, and triethylamine gave similar 

selectivity but lower yields.  
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Table 2.4.  Bromination study on N-methylated model compound 36 

 

 

 

entry equiv NBS Solvent ratio 39:40:41:42
a yieldb (%) 

1 1.0 THF 2:9:60:29 43 (40), 

23 (41) 

2 3.0 Acetone 0:22:0:78c ND 

3 1.0 Acetone 43:37:12:8 36 (40) 

4 1.2 THF:pyridine 

(19:1) 

7:31:44:18 28 (40) 

44 (41) 
 

a Estimated by 1H NMR analysis. b Isolated yield of the major product. c Low 

conversion to a complex mixture. ND = not determined. NBS = N-bromo succinamide. 

 

2.8 Conclusion 

 

 In conclusion, selective halogenations delivered breitfussin analogs with both 

natural and unnatural halogenation patterns. The rates of pyrrole and oxazole 

halogenation were found to be comparable. Site-selective bromination was achieved by 

adjusting the reaction solvent, and site-selective iodination was achieved by altering the 

substrate and reagents. These results will be useful not only for the synthesis of 
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halogenated target molecules such as breitfussins A and B but also for preparation of 

halogenated building blocks for palladium-catalyzed cross-coupling reactions.16 Our 

NMR spectroscopic comparisons support the assigned structures of breitfussins A and B, 

and we are pursuing their total synthesis in order to complete the structure validation. 

 

2.9 General Procedures 

 

 Unless otherwise noted, all reactions were performed with stirring under an argon 

atmosphere under anhydrous conditions. Reagents were purchased at the most 

economical grade. Dry tetrahydrofuran (THF) and N, N-dimethylformamide (DMF) were 

obtained by passing HPLC-grade solvents through commercial solvent purification 

systems. NBS was recrystallized from acetic acid. Unless otherwise noted, all other 

chemicals were used as received, without purification. Flash column chromatography was 

performed using Grace Davison Davisil silica gel (60 Å, 35–70 m). Yields refer to 

chromatographically- and spectroscopically- (1H NMR) homogeneous samples. Thin-

layer chromatography (TLC) was performed on Grace Davison Davisil silica TLC plates 

using UV light and common stains for visualization. NMR spectra were calibrated using 

a residual undeuterated solvent as an internal reference. Apparent couplings were 

determined for multiplets that could be deconvoluted visually. 
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2.10 Selected Experimental, Physical, and Spectral Data 

 

Amide 21. To a solution of 2-(trichloroacetyl)pyrrole (20, 6.76 g, 31.8 

mmol, 1.02 equiv) in 10 mL of DMF was added tryptamine (19, 5.00 g, 

31.2 mmol, 1.00 equiv). The mixture was stirred at 50 °C for 3 hours, 

then cooled to room temperature and diluted with EtOAc (2 × 500 mL). 

The combined organic layers was washed with water (2 × 500 mL) and saturated NaCl 

solution (500 mL), then dried over anhydrous MgSO4 and concentrated to give pure 

amide 21 as a brown solid (7.93 g, 100%). 21: Rf = 0.55 (80% EtOAc / hexanes); IR (thin 

film): max = 3403, 3315, 2925, 1616, 1558, 1520 cm–1; 1H NMR (600 MHz, DMSO-d6): 

 = 11.40 (s, 1H), 10.79 (s, 1H), 8.10 (t, J = 5.7 Hz, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.33 

(d, J = 8.0, 1H), 7.16 (d, J = 2.1, 1H), 7.06 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 6.98 (ddd, J = 

7.9, 7.0, 0.9 Hz, 1H), 6.83 (dt, J = 1.4, 2.6 Hz, 1H), 6.73 (ddd, J = 3.6, 2.4, 1.5 Hz, 1H), 

6.07 (dt, J = 3.5, 2.4 Hz, 1H), 3.49 (m, 2H), 2.91 (t, J = 7.7) ppm; 13C NMR (150 MHz, 

DMSO-d6):  = 160.6, 136.2, 127.3, 126.5, 122.5, 121.1, 120.9, 118.3, 118.1, 112.0, 

111.4, 109.6, 108.4, 39.2, 25.5 ppm; HRMS (ESI-QTOF) calcd for C15H16N3O
+ [M + 

H+]: 254.1288, found: 254.1287. 

 

Amide 28 was prepared in 89 % yield in the same manner. 28: Rf = 0.74 

(80 % EtOAc / hexanes); IR (thin film): max = 3410, 2940, 1704, 1632, 

1565, 1455 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 11.81 (s, 1H), 

10.80 (s, 1H), 8.23 (t, J = 5.7 Hz, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.34 (d, 

J = 8.1 Hz, 1H), 7.16 (d, J = 2.2 Hz, 1H), 7.07 (ddd, J = 8.0, 7.0, 1.0 Hz, 
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1H), 6.98 (ddd, J = 7.9, 7.0, 0.9, 1H), 6.97 (dd, J = 2.6, 1.6 Hz, 1H), 6.83 (t, J = 1.9 Hz, 

1H), 3.49 (m, 2H), 2.91 (t, J = 7.5 Hz, 2H) ppm;  13C NMR (150 MHz, DMSO-d6):  = 

159.56, 136.24, 127.25, 127.13, 122.62, 121.03, 120.93, 118.28, 118.23, 111.82, 111.38, 

111.24, 94.88, 25.38 ppm; HRMS (ESI-QTOF) calcd for C15H15BrN3O
+ [M + H+]: 

332.0393, found: 332.3970. 

 

 

Ketoamide 22. To a solution of amide 21 (1.05 g, 4.0 mmol, 1.0 equiv) 

in 20 mL of a THF:H2O mixture (9:1) at 0 °C was added DDQ (1.81 g, 

8.0 mmol, 2.0 equiv). The resultant red solution was stirred at 0 °C for 4 

hours, then diluted with EtOAc (200 mL). The organic layer was washed 

with saturated NaHCO3 solution (4 × 200 mL) until the aqueous layer remained colorless. 

The organic layer was dried over anhydrous MgSO4 and concentrated to give a brown 

solid. Flash column chromatography (100% EtOAc) gave pure ketoamide 22 (893 mg, 

84%) as a brown solid. 22: Rf = 0.20 (80% EtOAc / hexanes); IR (thin film): max = 3414, 

3207, 1631, 1562, 1517, 1438 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 12.01 (s, 1H), 

11.46 (s, 1H), 8.48 (d, J = 3.1 Hz, 1H), 8.28 (t, J = 5.9, 1H), 8.16 (d, J = 7.8 Hz, 1H), 

7.49 (dt, J = 8.2, 1.0 Hz, 1H), 7.22 (m, 1H), 7.19 (m, 1H), 6.87 (dt, J = 1.5, 2.6 Hz, 1H), 

6.85 (ddd, J = 3.7, 2.5, 1.5 Hz, 1H), 6.11 (dt, J = 3.6, 2.4 Hz, 1H), 4.60 (d, J = 5.9 Hz, 

2H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 190.7, 160.9, 136.4, 133.5, 126.2, 125.4, 

122.8, 121.8, 121.4, 121.2 114.0, 112.2, 110.2, 108.6, 45.6 ppm; HRMS (ESI-QTOF) 

calcd for C15H14N3O2
+ [M + H+]: 268.1081, found: 268.1079. 
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Bromo-ketoamide 29 was prepared in 77 % yield in the same manner. 

29: Rf = 0.43 (80 % EtOAc / hexanes); IR (thin film): max = 3409, 2936, 

1703, 1620, 1562, 1450 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 

12.10 (s, 1H), 11.86 (s, 1H), 8.47 (d, J = 3.1 Hz, 1H), 8.43 (t, J = 5.9 Hz, 

1H), 8.16 (d, J = 7.7 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.22 (m, 1H), 

7.19 (m, 1H), 7.01 (dd, J = 2.9, 1.6 Hz, 1H), 6.94 (dd, J = 2.5, 1.7 Hz, 1H), 4.60 (d, J = 

5.9 Hz, 2H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 190.35, 159.89, 136.41, 133.55, 

126.81, 125.43, 122.89, 121.86, 121.34, 121.16, 114.03, 112.19, 111.76, 95.02, 45.65 

ppm; HRMS (ESI-QTOF) calcd for C15H13BrN3O2
+ [M + H+]: 346.0186, found: 

346.0192. 

 

Oxazole 23. To a solution of ketoamide 22 (267 mg, 1.0 mmol) in 3.5 mL 

of pyridine at 0 °C was added POCl3 (0.7 mL) dropwise over 5 minutes. The 

mixture was stirred at 0 °C for 1.5 hours, then at 23 °C for another 1.5 

hours. The mixture was diluted with EtOAc (250 mL), washed with cold 

saturated NaHCO3 solution (250 mL), water (250 mL), and saturated NaCl solution (250 

mL), then dried over MgSO4 and concentrated to give a brown solid. Flash column 

chromatography (60% EtOAc / hexanes) gave pure oxazole 23 (207 mg, 83% yield) as a 

tan solid. 23: Rf = 0.36 (50% EtOAc / hexanes); IR (thin film): max = 3358, 1631, 1406 

cm–1; 1H NMR (600 MHz, DMSO-d6):  = 11.82 (s, 1H), 11.56 (s, 1H), 7.93 (d, J = 8.0 

Hz, 1H), 7.82 (d, J = 2.7 Hz, 1H), 7.47 (dt, J = 8.1, 0.9 Hz, 1H), 7.45 (s, 1H), 7.21 (ddd, J 

= 8.1, 7.0, 1.2 Hz, 1H), 7.16 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.97 (dt, J = 1.5, 2.6, Hz, 

1H), 6.75 (ddd, J = 3.5, 2.5, 1.5 Hz, 1H), 6.21 (dt, J = 3.5, 2.4 Hz, 1H) ppm; 13C NMR 
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(150 MHz, DMSO-d6):  = 154.0, 146.1, 136.4, 123.5, 123.1, 122.1, 121.6, 120.1, 120.0, 

119.9, 119.6, 112.0, 109.33, 109.30, 103.9 ppm; HRMS (ESI-QTOF): calcd for 

C15H12N3O
+ [M + H+]: 250.0975, found: 250.0982. 

 

Oxazole 30 was prepared in 66 % yield in the same manner. 30: Rf = 0.58 

(50 % EtOAc / hexanes); IR (thin film): max = 3406, 2924, 1499, 1424 cm–

1; 1H NMR (600 MHz, DMSO-d6):  = 12.21 (s, 1H), 11.59 (s, 1H), 7.94 (d, 

J = 7.8 Hz, 1H), 7.84 (d, J = 2.6 Hz, 1H), 7.48 (s, 1H), 7.48 (d, [peak 

overlaps singlet at 7.48], 1H), 7.21 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 7.16 (ddd, J = 7.9, 7.0, 

1.0 Hz, 1H), 7.12 (dd, J = 2.9, 1.6 Hz, 1H), 6.81 (dd, J = 2.5, 1.7 Hz, 1H) ppm; 13C NMR 

(150 MHz, DMSO-d6):  = 152.64, 146.74, 136.37, 123.44, 123.43, 122.19, 121.35, 

121.04, 120.17, 119.98, 119.69, 112.07, 110.73, 103.66, 95.97 ppm; HRMS (ESI-QTOF) 

calcd for C15H11BrN3O
+ [M + H+]: 328.0085, found: 328.0086. 

 

 

Bromopyrrole 24. To a solution of model compound 23 (30 mg, 0.12 

mmol, 1.0 equiv) in 4 mL of a THF:pyridine mixture (19:1) at 0 °C was 

added NBS (25 mg, 0.14 mmol, 1.2 equiv). The mixture was stirred at 0 °C 

for 30 min, then diluted with EtOAc (50 mL). The organic phase was 

washed with water (50 mL) and saturated NaCl solution (50 mL), then dried 

over Na2SO4 and concentrated to give a brown solid. Flash column chromatography (30% 

EtOAc / hexanes) gave pure bromopyrrole 24 (30 mg, 77% yield) as a tan solid. 24: Rf = 

0.50 (50% EtOAc / hexanes); IR (thin film): max = 3405, 2925, 1704, 1499, 1426 cm–1; 
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1H NMR (600 MHz, DMSO-d6):  = 12.60 (s, 1H), 11.59 (s, 1H), 7.93 (d, J = 8.0 Hz, 

1H), 7.84 (d, J = 2.6 Hz, 1H), 7.48 (d, [peak overlaps singlet at 7.48], 1H), 7.48 (s, 1H), 

7.21 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 7.16 (ddd, J = 7.8, 7.1, 1.0 Hz, 1H), 6.74 (dd, J = 

3.7, 2.6 Hz, 1H), 6.27 (dd, J = 3.7, 2.3 Hz, 1H) ppm; 13C NMR (150 MHz, DMSO-d6):  

= 152.8, 146.4, 136.4, 123.43, 123.35, 122.2, 121.8, 120.1, 120.0, 119.7, 112.1, 111.7, 

110.8, 103.8, 102.0 ppm; HRMS (ESI-QTOF) calcd for C15H11BrN3O
+ [M + H+]: 

328.0080, found: 328.0081. 

 

Bromooxazole 25. To a solution of model compound 23 (50 mg, 0.20 

mmol, 1.0 equiv) in 4 mL of acetone at 0 °C, was added NBS (36 mg, 

0.20 mmol, 1.0 equiv). The mixture was stirred at 0 °C for 30 minutes, 

then extra NBS (71 mg, 0.40 mmol, 2.0 equiv) was added and the mixture 

was stirred for an additional 5 minutes at 0 °C. The reaction was quenched by addition of 

10 wt% Na2SO3 (10 mL), then extracted with EtOAc (40 mL). The organic phase was 

washed with water (40 mL) and saturated NaCl solution (40 mL), then dried over MgSO4 

and concentrated to give a brown solid. Flash column chromatography (30% EtOAc / 

hexanes) gave pure bromooxazole 25 (29 mg, 45% yield) as a tan solid. 25: Rf = 0.48 

(50% EtOAc / hexanes); IR (thin film): max = 3212, 2927, 1619, 1457 cm–1; 1H NMR 

(600 MHz, DMSO-d6):  = 12.02 (s, 1H), 11.75 (s, 1H), 8.07 (d, J = 7.9 Hz, 1H), 7.98 (d, 

J = 2.7 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.24 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.19 (ddd, 

J = 8.1, 7.1, 1.1 Hz, 1H) 7.03 (dt, J = 1.5, 2.6 Hz, 1H), 6.85 (ddd, J = 3.7, 2.5, 1.5 Hz, 

1H), 6.25 (dt, J = 3.5, 2.4 Hz, 1H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 154.2, 

143.1, 135.9, 124.4, 124.1, 122.6, 122.5, 120.45, 120.37, 118.9, 112.1, 110.5, 109.8, 
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108.3, 101.9 ppm; HRMS (ESI-QTOF) calcd for C15H11BrN3O
+ [M + H+]: 328.0091, 

found: 328.0083. 

 

Iodopyrrole 31. Procedure (a): To a solution of model compound 23 (30 

mg, 0.12 mmol, 1.0 equiv) in 4 mL of a THF:pyridine mixture (19:1) at 0 

°C was added NIS (40 mg, 0.18 mmol, 1.5 equiv). The mixture was stirred 

at 0 °C for 30 min, then diluted with EtOAc (50 mL). The organic phase 

was washed with water (50 mL) and saturated NaCl solution (50 mL), then 

dried over Na2SO4 and concentrated to give a dark green solid. Flash column 

chromatography (30 % EtOAc / hexanes) gave pure iodopyrrole 31 (18 mg, 40 % yield) 

as a yellow solid. 

Procedure (b): A solution of iodopyrrole 34 (46 mg, 0.08 mmol, 1.0 equiv) in 1 mL of 

CH2Cl2:TFA (9:1) was stirred at 23 °C for 3 hours. The mixture was diluted with EtOAc 

(25 mL). The organic phase was washed with water (25 mL) and saturated NaCl solution 

(20 mL), then dried over Na2SO4 and concentrated to give a dark green solid. Flash 

column chromatography (30 % EtOAc / hexanes) gave pure iodopyrrole 31 (27 mg, 90 % 

yield) as a yellow solid. 31: Rf = 0.59 (50 % EtOAc / hexanes); IR (thin film): max = 

3407, 3126, 2919, 1704, 1615, 1495, 1457 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 

12.36 (s, 1H), 11.58 (s,1H), 7.93 (d, J = 7.9 Hz, 1H), 7.84 (d, J = 2.6 Hz, 1H), 7.48 (dt, J 

= 8.0, 1.0 Hz, 1H), 7.46 (s, 1H), 7.21 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.16 (ddd, J = 7.9, 

7.0, 1.1 Hz, 1H), 6.68 (d, J = 3.5 Hz, 1H), 6.38 (d, J = 3.5 Hz, 1H) ppm; 13C NMR (150 

MHz, DMSO-d6):  = 152.70, 146.31, 136.37, 124.43, 123.41, 123.33, 122.14, 120.10, 
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119.95, 119.66, 118.88, 112.06, 111.77, 103.77, 69.65 ppm; HRMS (ESI-QTOF): calcd 

for C15H11IN3O
+ [M + H+]: 375.9941, found: 375.9941. 

 

Iodooxazole 32. To a solution of crude iodooxazole 37 (0.089 mmol 

theoretical, 1.0 equiv) in 1 mL of THF at 0 °C was added TBAF (1.0 M in 

THF, 285 L, 0.285 mmol, 3.2 equiv). The mixture was stirred at 0 °C for 

10 minutes, then diluted with ether (50 mL). The organic layer was 

washed with water (2 × 50 mL) and saturated NaCl solution (50 mL), then dried over 

MgSO4 and concentrated to give a tan solid. Flash column chromatography (25 % EtOAc 

/ hexanes) gave pure iodooxazole 32 (22 mg, 67 % yield over two steps) as a white solid. 

32: Rf = 0.63 (50 % EtOAc / hexanes); IR (thin film): max = 3401, 2924, 1515, 1455, 

1416 cm–1; 1H NMR (600 MHz, DMSO-d6): 11.98 (s, 1H), 11.70 (s, 1H), 8.07 (d, J = 

2.7 Hz, 1H), 8.04 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.23 (ddd, J = 7.9, 7.1, 1.1 

Hz, 1H), 7.19 (ddd, J = 7.9, 7.0, 1.1 Hz, 1H), 7.00 (dt, J = 1.5, 2.6 Hz, 1H), 6.81 (ddd, J = 

3.5, 2.4, 1.5 Hz, 1H), 6.24 (dt, J = 3.5, 2.4 Hz, 1H) ppm; 13C NMR (150 MHz, DMSO-

d6):  = 155.83, 147.42, 135.83, 124.66, 124.41, 122.37, 122.35, 120.42, 120.36, 118.94, 

112.09, 110.19, 109.59, 102.45, 78.27 ppm; HRMS (ESI-QTOF) calcd for C15H11IN3O
+ 

[M + H+]: 375.9941, found: 375.9936. 

 

Carbamate 34. To a solution of oxazole 23 (50 mg, 0.20 mmol, 1.0 equiv) 

and Boc anhydride (131 mg, 0.60 mmol, 3.0 equiv) in 1 mL of THF was 

added DMAP (3 mg, 0.02 mmol, 0.1 equiv). The mixture was stirred at 23 

°C for one hour, then quenched with water (5 mL) and diluted with ether 
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(50 mL). The organic layer was washed with water (50 mL) and saturated NaCl solution 

(50 mL), then dried over MgSO4 and concentrated to give a yellow solid. Flash column 

chromatography (15 % EtOAc / hexanes) gave pure carbamate 34 (76 mg, 84 % yield) as 

a white solid. 34: Rf = 0.38 (20 % EtOAc/Hexanes); IR (thin film): max = 2948, 2868, 

1452 cm–1; 1H NMR (600 MHz, CDCl3):  = 8.24 (d, J = 7.3 Hz, 1H), 7.91 (s, 1H), 7.86 

(d, J = 7.8 Hz, 1H), 7.48 (dd, J = 3.2, 1.8, Hz,1H), 7.46 (s, 1H), 7.41 (dt, J = 0.9, 7.8 Hz, 

1H), 7.35 (dt, J = 0.6, 7.6 Hz, 1H), 6.77 (dd, J = 3.4, 1.7 Hz, 1H), 6.32 (t, J = 3.4 Hz, 

1H), 1.69 (s, 9H), 1.43 (s, 9H) ppm; 13C NMR (150 MHz, CDCl3):  = 154.61, 149.39, 

148.49, 146.43, 135.77, 126.74, 125.35, 124.64, 123.54, 123.06, 122.65, 121.01, 120.36, 

119.01, 115.65, 111.16, 109.61, 84.65, 84.35, 28.29, 27.79 ppm; HRMS (ESI-QTOF): 

calcd for C25H28N3O5
+ [M + H+]: 450.2023, found: 450.2026. 

 

 N-Boc Iodopyrrole 35. To a solution of carbamate 34 (20 mg, 0.04 mmol, 

1.0 equiv) in 1 mL of CH2Cl2 was added NIS (20 mg, 0.09 mmol, 2.2 

equiv). The mixture was stirred at 23 °C for 24 hours, and then diluted with 

ether (25 mL). The organic phase was washed with water (25 mL) and 

saturated NaCl solution (25 mL), then dried over MgSO4 and concentrated 

to give a colorless solid. Flash column chromatography (15 % EtOAc / hexanes) gave 

pure N-Boc iodopyrrole 35 (16 mg, 70 % yield) as a colorless solid. 35: Rf = 0.43 (20 % 

EtOAc / hexanes); IR (thin film): max = 2980, 2934, 1740, 1477, 1453, cm–1; 1H NMR 

(600 MHz, CDCl3):  = 8.24 (d, J = 8.2 Hz, 1H), 7.89 (s, 1H), 7.82 (d, J = 7.8 Hz, 1H), 

7.44 (s, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 3.6 Hz, 1H), 

6.6 (d, J = 3.6 Hz, 1H), 1.69 (s, 9H), 1.48 (s, 9H) ppm; 13C NMR (150 MHz, CDCl3):  = 
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153.82, 149.40, 148.38, 146.19, 135.80, 126.67, 125.42, 125.14, 123.62, 123.48, 123.19, 

122.76, 120.27, 118.47, 115.71, 109.38, 86.22, 84.64, 70.15, 28.33, 27.71 ppm; HRMS 

(ESI-QTOF): calcd for C25H27IN3O5
+ [M + H+]: 576.0990, found: 576.0998. 

 

N-TIPS amine 36. To a solution of oxazole 23 (100 mg, 0.40 mmol, 1.0 

equiv)) in 1 mL DMF at 0 °C was added NaH (60 % dispersion in mineral 

oil, 29 mg, 1.20 mmol, 3.0 equiv). The mixture was stirred at 0 °C for 20 

minuties, then TIPSCl (257 L, 1.20 mmol, 3.0 equiv). The mixture was 

stirred at 23 °C for one hour. The compound was extracted in diethyl ether (50 mL). The 

organic layer was washed with water (50 mL), saturated solution of NaCl (50 mL) then 

dried over MgSO4 and concentrated to give a white solid. Flash column chromatography 

(5 % EtOAc / hexanes) gave pure 36 (198 mg, 88% yield) as a white solid. 36: Rf = 0.74 

(20 % EtOAc / hexanes); IR (thin film): max = 2980, 2933, 1760, 1740, 1609, 1476, 

1453, cm–1;  1H NMR (600 MHz, CDCl3):  = 7.88 – 7.85 (m, 1H), 7.57 (s, 1H), 7.56 – 

7.54 (m, 1H), 7.29 (s, 1H), 7.27 – 7.22 (m, 2H), 7.07 (dd, J = 2.7, 1.5, 1H), 7.05 (dd, J = 

3.4, 1.5 Hz, 1H), 6.38 (dd, J = 3.4, 2.8 Hz, 1H), 1.84 (septet, J = 7.5 Hz, 3H), 1.75 

(septet, J = 7.5 Hz, 3H), 1.18 (d, J = 7.5 Hz, 18H), 1.14 (d, J = 7.5 Hz, 18H) ppm; 13C 

NMR (150 MHz, CDCl3):  = 155.54, 146.34, 141.54, 129.37, 128.64, 127.62, 126.06, 

122.52, 120.94, 120.81, 120.00, 116.53, 114.43, 110.60, 108.03, 18.49, 18.23, 13.54, 

12.95 ppm; HRMS (ESI-QTOF) calcd for C33H52N3OSi2
+ [M + H+]: 562.3643, found: 

562.3650. 
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N-TIPS iodooxazole 37. Procedure (a): To a solution of TIPS amine 36 

(50 mg, 0.089 mmol, 1.0 equiv) in 1 mL of THF at –40 °C was added 

tBuLi (1.7 M in pentane, 157 L, 0.27 mmol, 3.0 equiv). The mixture was 

stirred at –40 °C for 30 minutes, then a solution of iodine (113 mg, 0.44 

mmol, 5.0 equiv) in 1 mL of THF added. The reaction mixture was warmed to 23 °C, 

then quenched by addition of 10 wt % Na2SO3 (10 mL). The mixture was extracted with 

ether (25 mL). The organic layer was washed with water (25 mL) and saturated NaCl 

solution (25 mL), then dried over MgSO4 and concentrated to give crude iodooxazole 32 

along with partially-desilylated products as a white solid. 

Procedure (b): To a solution of TIPS amine 36 (50 mg, 0.089 mmol, 1.0 equiv) in 1 mL 

of pyridine THF (19:1) at –40 °C was added ICl (1.0 M in CH2Cl2, 178 L, 0.18 mmol, 

2.0 equiv) drop by drop over 30 min, then reaction was warmed to 0 °C over 3 hours. 

Again ICl (1.0 M in CH2Cl2, 45 L, 0.045 mmol, 0.5 equiv) was added. After 5 min 

reaction mixture was quenched by addition of 10 wt % Na2SO3 (10 mL). The mixture was 

extracted with ether (25 mL). The organic layer was washed with water (25 mL) and 

saturated NaCl solution (25 mL), then dried over MgSO4 and concentrated to give crude 

iodooxazole 33 as a white solid. 

 

N-Methylated compound 39. To a solution of N-unmethylated compound 

23 (50 mg, 0.20 mmol, 1.0 equiv) in 1 mL of DMF at 0 °C was added NaH 

(60% dispersion in mineral oil, 15 mg, 0.60 mmol, 3.0 equiv). The mixture 

was stirred at 0 °C for 15 minutes, then methyl iodide (38 L, 0.60 mmol, 

3.0 equiv) was added. The mixture was stirred at 23 °C for 30 minutes, then extracted 
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with EtOAc (50 mL). The organic layer was washed with water (50 mL) and saturated 

NaCl solution (50 mL), then dried over Na2SO4 and concentrated to give a white solid. 

Flash column chromatography (30% EtOAc / hexanes) gave pure N-methylated 

compound 39 (53 mg, 95% yield) as a white solid. 39: Rf = 0.20 (20% EtOAc / hexanes); 

IR (thin film): max = 3258, 2919, 2853 1631, 1406 cm–1; 1H NMR (600 MHz, DMSO-

d6):  = 7.90 (d, J = 7.9 Hz, 1H), 7.86 (s, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.49 (s, 1H), 7.28 

(ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.21 (ddd, J = 7.9, 7.1, 0.9 Hz, 1H), 7.02 (t, J = 2.1 Hz, 

1H), 6.81 (dd, J = 3.8, 1.8 Hz, 1H), 6.17 (dd, J = 3.8, 2.6 Hz, 1H), 4.00 (s, 3H), 3.86 (s, 

3H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 153.6, 145.6, 136.9, 127.3, 127.2, 123.8, 

122.2, 120.7, 120.3, 120.0, 119.7, 111.4, 110.4, 108.0, 102.8, 36.2, 32.7 ppm; HRMS 

(ESI-QTOF) calcd for C17H16N3O
+ [M + H+ ]: 278.1288, found: 278.1258. 

 

Bromopyrrole 40, bromooxazole 41, and dibromide 42. To a solution of 

model compound 39 (25 mg, 0.09 mmol, 1.0 equiv) in 2 mL of a 

THF:pyridine mixture (19:1) at 0 °C was added NBS (19 mg, 0.11 mmol, 

1.2 equiv). The mixture was stirred at 0 °C for 15 min, then diluted with 

EtOAc (50 mL). The organic phase was washed with water (50 mL) and 

saturated NaCl solution (50 mL), then dried over Na2SO4 and concentrated to give a 

brown solid. Flash column chromatography (15% EtOAc / hexanes) gave pure 

bromopyrrole 40 (9.0 mg, 28%), bromooxazole 41 (14 mg, 44%), and dibromide 42 (5.3 

mg, 13%) as white solids. 40: Rf = 0.35 (20% EtOAc / hexanes); IR (thin film): max = 

2923, 2858, 1621, 1607, 1511, 1402 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 7.91 (dt, 

J = 8.0, 09 Hz, 1H), 7.88 (s, 1H), 7.54 (d, J = 8.2 Hz, 1H), 7.53 (s, 1H), 7.28 (ddd, J = 
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8.1, 7.1, 1.0 Hz, 1H), 7.21 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.89 (d, J = 4.0 Hz, 1H), 6.40 

(d, J = 4.0 Hz, 1H), 4.01 (s, 3H), 3.87 (s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 

152.7, 145.9, 136.9, 127.5, 123.7, 122.2, 120.4, 119.9, 119.7, 111.8, 111.2, 110.5, 107.7, 

102.6, 34.5, 32.8 ppm; HRMS (ESI-QTOF) calcd for C17H15BrN3O
+ [M + H+]: 356.0393, 

found: 356.0384. 

 

41: Rf = 0.36 (20% EtOAc / hexanes); IR (thin film): max = 2920, 2850, 

1622, 1600, 1507, 1412 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 8.03 

(s, 1H), 8.00 (d, J = 7.9 Hz, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.31 (ddd, J = 

8.2, 7.1, 1.0 Hz, 1H), 7.24 (ddd, J = 7.9, 7.1, 0.9 Hz, 1H), 7.09 (t, J = 2.1 

Hz, 1H), 6.90 (dd, J = 3.8, 1.8 Hz, 1H), 6.20 (dd, J = 3.8, 2.6 Hz, 1H), 3.98 (s, 1H), 3.90 

(s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 153.7, 142.8, 136.4, 128.3, 128.1, 

124.4, 122.5, 120.8, 120.2, 119.6, 112.4, 110.6, 108.4, 108.0, 100.8, 36.2, 32.9 ppm; 

HRMS (ESI-QTOF) calcd for C17H15BrN3O
+ [M + H+]: 356.0393, found: 356.0380. 

 

42: Rf = 0.42 (20% EtOAc / hexanes); IR (thin film): max = 2924, 2852, 

1621, 1506, 1412 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 8.05 (s, 1H), 

8.00 (dt, J = 7.9, 1.0 Hz, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.31 (ddd, J = 8.2, 

7.1, 1.0 Hz, 1H), 7.24 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 6.99 (d, J = 4.1 Hz, 

1H), 6.44 (d, J = 4.1 Hz, 1H), 3.98 (s, 3H), 3.91 (s, 3H) ppm; 13C NMR 

(150 MHz, DMSO-d6):  = 152.7, 143.2, 136.4, 128.5, 124.4, 122.6, 121.2, 120.9, 120.3, 

112.8, 111.6, 110.6, 108.8, 107.8, 100.7, 34.6, 33.0 ppm; HRMS (ESI-QTOF) calcd for 

C17H14Br2N3O
+ [M + H+]: 433.9498, found: 433.9502. 
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CHAPTER 3. TOTAL SYNTHESIS OF BREITFUSSINS (A AND B) AND 

ISOMERISM STUDIES 

 

Part of this chapter has been published in Organic Letters Journal especially work on 

bromination on breitfussins analog, For reference, please see:  

Khan, A. K.; Chen, J. S. Org. Lett. 2015, 17, 3718. 

 

3.1 Introduction 

 

 Breitfussins A and B (Figure 3.1) are highly modified and halogenated dipeptide 

natural products isolated from the Arctic hydrozoan Thuiaria breitfussi.1 These 

compounds are composed of a rare molecular frame of indole, oxazole, and pyrrole. 

Natural products containing oxazole are relatively rare, and breitfussin A is only known 

iodo-oxazole containing the natural product. These compounds are recently identified 

halogenated oxazole derivative and a new class of marine alkaloids related to phorbazoles 

and diazonamides. The traditional methods of structure determination (NMR, IR, MS, 

UV) were not sufficient to assign the structure of breitfussins. Non-tradition methods, 

atomic force microscopy (AFM)2-4 imaging and other computational tool,5 were called 

upon to determine final structure of these molecules. Due to the unprecedented use of 

AFM, in structure determination of breitfussins, the total synthesis will provide a final 

proof of the structure. It may help to open the possibility of AFM as structure elucidation 

tool in combination with other analytical tools. Hedberg, Bayer, and coworkers 

synthesized breitfussins A and B using Suzuki coupling reactions to join the 

heteroaromatic rings, thus confirming the assigned structure of these natural products.6,7        
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Figure 1.3. Structure of breitfussin A and B 

 

3.2 Retrosynthetic Analysis of Breitfussins 

 

 

 In our retrosynthetic analysis, we envisioned site-selective late-stage 

halogenations for the synthesis of breitfussins A and B (17 and 18) from a common 

precursor oxazole (43) (Figure 3.2) by using our developed methods for selective 

halogenation on breitfussins analog. 

 Inspired by the isolation team’s description of the breitfussins as highly-oxidized 

dipeptides,34 we envisioned synthesis of the central oxazole ring by Robinson-Gabriel 

oxazole synthesis from β-amidoketone (44) moiety at the center of the molecule. This β-

amidoketone (45) compound can be synthesized from substituted tryptamine 45 and 2-

(trichloroacetyl)pyrrole (20) as high oxidation state surrogates for tryptophan and proline. 

The substituted tryptamine is not commercially available, and its synthesis has not been 

reported. Thus retrosynthetic analysis led us to the substituted indole (46). This 

substituted indole is commercially available but not radially. It is also very expensive (~ 

$700/gm), we envisioned the synthesis of the indole from commercially available 

substituted benzyl aldehyde (48) by using Hemetsberger indole synthesis. 
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Figure 3.2. Retrosynthetic analysis of breitfussins 

 

3.3 Synthesis of substituted amide 54 

 

 For the synthesis of substituted indole 46 (Scheme 3.1), we have used 

Hemetsberger indole synthesis because it has been used for the synthesis of similar 

indole.8 Furthermore, this route was chosen because it had been employed for synthesis of 

indole on a gram scale and required only one chromatographic separation. Thus, 

commercially-available aldehyde 48 was condensed with methyl azidoacetate, which was 

obtained by reaction between chloroacetate and azide, to form azido ester 47. On cooling, 

azido ester precipitates out from the reaction mixture. On scale-up of this reaction, we 

determined that yield was irreproducible. After careful analysis of reaction byproduct, we 

found that on a large scale, product azido ester 47 was undergoing decomposition by 
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hydrolysis when the reaction was quenched with ice at room temperature. To get 

reproducible yield, the reaction mixture was cooled to 0 °C at first, and then ice-water 

was added. This change in quenching procedure resulted in the formation of azidoester 47 

in 71% yield reproducibly. Thermolysis of azido ester 47 in xylenes under degassed 

(absence of oxygen) condition resulted, a Hemetsberger indole synthesis;9 2-methyl 

carboxy indole 49. It was crystallized out in 77% yield upon cooling of the reaction 

mixture. Saponification of the methyl ester of intermediate 49 afforded carboxylic acid 

50 in 94% yield without purification. For the decarboxylation of acid to produce indole, 

ten percent of carboxylic acid 50 was converted into the corresponding copper(II) salt 51, 

which served as a catalyst for the thermal decarboxylation10 of carboxylic acid 50 to 

deliver indole 46 in 68% yield after column chromatography. This is the first column 

chromatography used for the purification of indole over five steps. Vilsmeier–Haack 

formylation of indole 46 afforded a 3-substituted aldehyde 52 in 91% yield after column 

chromatography. The obtained 3-substituted aldehyde 52 was subjected to a Henry 

reaction with nitromethane. It produced nitro-indole derivative 53 in 96% yield as 

crystalline compound after cooling to room temperature. The subsequent reduction of 

nitro-indole derivative 53 with lithium-aluminiumhydride resulted in substituted 

tryptamine (45) in 98% yield. Both reactions proceeded sufficiently cleanly that no 

purification was necessary. The reaction substituted tryptamine 45 with 2-

(trichloroacetyl)pyrrole (20) resulted in the formation of substituted amide 54 in 98% 

yield without purification.  
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Scheme 3.1. Synthesis of substituted amide 54
[a]

 

 

 

 

[a] Reagents and conditions: a) 48 (1.0 equiv), then NaOMe (5.0 equiv), MeOH, 0 °C for 

30 min then 23 °C for 2 h, 71%; b) 49 xylene, 140 °C, 30 min, 77%; c) 3 M aq NaOH 

reflux for 6.0 h, then HCl, 94%; d) Na2CO3 (0.5 equiv) heat to dissolve then CuSO4; e) 

(10 mole % of 51 and acid 50) then heated to 215 °C for 5.0 h, 68%; f) POCl3 (1.3 equiv) 

DMF at 0 °C for 15 min then 46, 30 min at 0 °C then NaOH to make basic, 100 °C for 30 

min, 91%; g) NH4OAc (1.0 equiv), nitromethane, 100 °C for 12 h, 96%; h) LiAlH4 (6.0 

equiv), at 0 °C for 15 min then 70 °C for 5.0 h, 98%; i) 20 (1.02 equiv), DMF, 23 °C for 

6.0 h; LiAlH4 = lithium-aluminiumhydride.  
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3.4 Synthesis of oxazole 43 

 

In our synthesis of breitfussin model compound 23, amide 21 was oxidized by an 

aqueous solution of DDQ to yield ketoamide 22 (Scheme 2.1) with out any problem but 

oxidation of amide 54 by an aqueous solution of DDQ to yield ketoamide 44 (Scheme 

3.2) was not to the optimal level. Unfortunately, a small amount of debrominated 

ketoamide 56 (<10%) was also formed, and this undesired contaminant proved 

chromatographically inseparable both at this stage and at later stages in the synthesis.  

The debromination yield was minimized by adjusting the solvent composition and 

tuning the substrate and reagent concentrations, but we were unsuccessful in shutting 

down the debromination pathway during the DDQ oxidation of amide 54 into ketoamide 

44. After monitoring reaction carefully over time with H NMR, we noticed that there was 

no debromination during the initial oxidation of amide 54 into benzylic alcohol 55 (Table 

3.1), and the crude material could be cleanly oxidized by IBX to form ketoamide 44 

(Scheme 3.2) without formation of debrominated side product 56. During monitoring of 

debrominated product with NMR, we did not calculate the amount of benzylic alcohol 55 

or ketoamide 44 produced because NMR peaks of these compounds overlap and could 

not be calculated separately. This detour added one step to the synthesis but also resulted 

in an improved yield (60% for the two-step process; compare with 51% for the one-step 

process). Robinson–Gabriel cyclization of ketoamide 44 gave oxazole 43 in 70% yield 

after column chromatography. 
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Scheme 3.2. Synthesis of substituted oxazole 43
[a]

 

 

 

[a] Reagents and conditions: a) DDQ (3.0 equiv), THF:H2O (9:1), 0 °C for 3.0 h; b) IBX 

(3.0 equiv), THF, 23 °C for 3.0 h, 60% over 2 steps; c) POCl3 in pyridine (1:5) dropwise 

over 5 minutes at 0 °C for 1.5 h then to 23 °C for 1.5 h, 71%; DDQ = 2,3-dichloro-5,6-

dicyano-1,4-benzoquinone; IBX = 2-iodoxybenzoic acid. 

 

Table 3.1. Monitoring of debromination keto-amide 56 by NMR analysis 

 

Entry Time (h) Temperature 

°C 

% of keto-amide 44
 % of debrominated 

keto-amide 56
 

1 1.0 0 ND 0 

2 1.5 0 ND 0 

3 2.0 0 ND 0 

4 2.5 0 ND 0 

5 3.0 0 ND 0 

6 

7 

3.5 

6.0 

0 

0 

ND 

51 

>2 

9 
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3.5 Synthesis of breitfussin A (17) 

 

 To follow the method developed on our model compound 23 to carry out 

iodination on oxazole, we converted oxazole 43 into N-TIPS oxazole 57 in 89% yield by 

using sodium hydride and TIPSCl. The N-TIPS oxazole 57 was subjected to iodine 

monochloride (ICl) in pyridine: THF (19:1) and subsequent deprotection by TBAF to 

furnish breitfussin A (17) in 53% yield over two steps. This iodination was carried out in 

a very careful way to avoid over iodination. At first reaction mixture was cooled to −40 

°C in pyridine: THF (19:1) mixture (THF was used to avoid freezing of pyridine) then 

0.8 equivalent of  ICl was added drop by drop over the period of 30 min, and the reaction 

was warmed to 0 °C over three hours. 0.5 equivalent of ICl was added at 0 °C and then 

quenched after 5 minutes with a saturated solution of sodium thiosulfate. The NMR 

spectroscopic data for synthetic breitfussin A (17) was identical to that reported for the 

natural substance.11
 

 

Scheme 3.3. Synthesis of breitfussin A (17)
 [a] 

 

 

[a] Reagents and conditions: a) NaH (3.0 equiv), DMF, 0 °C for 20 min then TIPCl then 

23 °C for 1.0 h, 89%; b) ICl (0.8 equiv), pyridine:THF (19:1) , −40 °C to 0 °C over 3.0 h, 
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then ICl (0.5 equiv) and quenched in 5 min; c) TBAF (3.2 equiv) THF at 0 °C for 10 min, 

53 % over 2 steps; IC = Iodine monochloride; TIPCl = Triisopropylsilyl chloride; TBAF 

= Tetra-n-butylammonium fluoride. 

 

3.6 Synthesis of breitfussin B (18) and Isomerism study 

 

 To synthesize breitfussin B (18), we followed the bromination condition 

developed in our model study; intermediate 43 was subjected to the action of NBS in a 

19:1 mixture of THF and pyridine to deliver breitfussin B (18) in 75% yield after column 

chromatography. The NMR spectroscopic data for synthetic breitfussin B (18) was 

identical to that reported for the natural substance.11,12 

 Here we decided to get a bromo analog of breitfussin A by using our develop 

method for bromination of oxazole on model compound (23). The oxazole 43 was 

brominated in acetone in order to generate bromooxazole 59, an analog of breitfussin A 

(17). NMR spectroscopic analysis of the crude mixture spiked with a measured quantity 

of DMF (used as an internal standard) revealed a 46% yield of bromooxazole 26 along 

with breitfussin B (18) (29% yield) and a dibrominationed product 60 (16% yield). The 

crude mixture was stable for at least a week, but flash column chromatography in silica 

gel isomerized bromooxazole 59 into bromopyrrole 18 (i.e., breitfussin B).11 This 

surprising result reveals that control of the competitive bromination of the pyrrole and 

oxazole rings is not necessary for the synthesis of breitfussin B (18); the facile silica gel-

promoted isomerization provides access to breitfussin B (18) even if the bromination 

conditions favor bromooxazole 59. 
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 Unable to isolate pure bromooxazole 59, we probed the mechanism of 

isomerization by TLC analysis. As shown in Figure 3.1, compounds 43 and 60 were not 

formed from bromooxazole 59 during its isomerization into bromopyrrole 18, suggesting 

a unimolecular bromine transfer. A mixture of compounds 43 and 60 did not equilibrate 

on silica (see Supporting Information), further supporting the unimolecular nature of the 

bromine transfer. We also explored other surfaces like alumina (neutral, acidic and 

basic), celite and effect of acid and base on the rate of isomerization. In most of the cases, 

the rate of isomerization did not change to a significant amount. The bromine migration 

does not appear to be dependent on light or air. 

 We subjected breitfussin A (17) to similar conditions, but surprisingly it did not 

undergo isomerization. On heating to higher temperature breitfussin A undergoes 

decomposition without isomerization. The indole methoxy group appears to be necessary 

for bromine migration; model compounds 24 and 25 did not equilibrate on silica even at 

150 °C. This observation sheds some light on the biosynthesis of breitfussin A (17) and B 

(18). The most likely same enzyme is responsible for halogenation (i.e., bromination and 

iodination) on oxazole of compound oxazole 43, then bromo analog 60 undergoes 

isomerization to produce breitfussin B (18) while iodinated oxazole results breitfussin A 

(17) without isomerization.  

 

 

 

 

 



www.manaraa.com

51 

 

 

 

 

Scheme 3.4. Synthesis of breitfussin B (18) [a] 

 

[a] Reagents and conditions: a) NBS (1.0 equiv), THF:pyridine (19:1), 0 °C for 30 min, 

75%; b) NBS (1.0 equiv), acetone, 0 °C for 10 min then (0.5 equiv) 0 °C for 5.0 min; 

NBS = N-bromo succinamide. 

 

 

Figure 3.3. TLC investigation of silica-mediated isomerization 

  

3.7 Conclusion 

 

 In summary, we have used our developed method of tunable site-selective 

halogenation of the breitfussin core to the synthesis of breitfussin A (17) with use of only 

one protecting group, and a protecting group-free synthesis of breitfussin B (18). 
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Bromooxazole 59 was synthesized by simply changing the bromination solvent, but it 

isomerized into breitfussin B (18) during column chromatography. Our synthesis 

provided breitfussin A (17) in 6.5% overall yield over 14 reaction steps and breitfussin B 

(18) in 9.2% overall yield over 12 reaction steps from commercial starting materials and 

5,7 chromatographic purifications respectively. The NMR comparison of isolated natural 

products and synthesized molecules were found to be same.  

  

3.8 General Procedures 

 

 Unless otherwise noted, all reactions were performed with stirring under an argon 

atmosphere under anhydrous conditions. Reagents were purchased at the most 

economical grade. Dry tetrahydrofuran (THF) and N, N-dimethylformamide (DMF) were 

obtained by passing HPLC-grade solvents through commercial solvent purification 

systems. NBS was recrystallized from acetic acid. Unless otherwise noted, all other 

chemicals were used as received, without purification. Flash column chromatography was 

performed using Grace Davison Davisil silica gel (60 Å, 35–70 m). Yields refer to 

chromatographically- and spectroscopically- (1H NMR) homogeneous samples. Thin-

layer chromatography (TLC) was performed on Grace Davison Davisil silica TLC plates 

using UV light and common stains for visualization. NMR spectra were calibrated using 

a residual undeuterated solvent as an internal reference. Apparent couplings were 

determined for multiplets that could be deconvoluted visually. 
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3.9 Selected Experimental, Physical, and Spectral Data 

 

Azidoester 47. To a solution of methyl azidoacetate and aldehyde 

48 (7.50 g, 35 mmol, 1.0 equiv) in 75 mL of methanol at 0 °C was 

added a methanolic sodium methoxide solution [prepared by 

dissolving solid sodium metal (4.01 g, 174 mmol, 5.0 equiv) in 100 mL of methanol at 0 

°C] dropwise via cannula over 15 min. The reaction mixture was stirred at 0 °C for 30 

min, then warmed to 23 °C over 2 hours. Ice water (100 g) was added to the reaction 

mixture, which was then immediately filtered. The precipitate was dissolved in  EtOAc 

(300 mL), dried over Na2SO4, and concentrated to give pure azidoester 47 (7.71 g, 71% 

yield) as a white solid. 47: Rf = 0.61 (20% EtOAc / hexanes); IR (thin film): max = 2951, 

2853, 2124, 1713, 1585, 1481 cm–1; NMR (600 MHz, CDCl3):  = 8.09 (d, J = 8.5 Hz, 

1H), 7.27 (s, 1H), 7.13 (dd, J = 8.5, 1.8 Hz, 1H), 7.02 (d, J = 1.8 Hz, 1H), 3.91 (s, 3H), 

3.86 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3):  = 164.2, 158.1, 131.7, 125.6, 124.5, 

123.7, 121.2, 118.4, 114.3, 56.1, 53.1 ppm; HRMS (ESI-QTOF): compound fragments. 

 

Indole 49. A deoxygenated solution of azido ester 47 (7.60 g, 24 

mmol) in 50 mL of xylenes was added dropwise via cannula over 15 

min to 50 mL of xylenes that had been pre-heated to 140 °C. The 

reaction mixture was maintained at 140 °C for 30 minutes, then cooled to 0 °C. The 

resultant precipitate was collected by centrifuge, then washed with hexanes (2 × 100 mL) 

to give pure indole 49 (5.31 g, 77% yield) as a white solid. 49: Rf = 0.42 (20% EtOAc / 

hexanes); IR (thin film): max = 3303, 1701, 1460, 1447 cm–1; 1H NMR (600 MHz, 
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CDCl3):  = 8.82 (s, 1H), 7.28 (dd, J = 2.2, 0.8 Hz, 1H), 6.63 (d, J = 1.2 Hz, 1H), 3.94 (s, 

3H), 3.93 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3):  = 162.3, 154.9, 138.3, 126.3, 

119.8, 118.1, 108.00, 106.8, 104.5, 55.8, 52.2 ppm; HRMS (ESI-QTOF): calcd for 

C11H11BrNO3
+ [M + H+]: 283.9917, found: 283.9915. 

 

 Carboxylic acid 50. A suspension of methyl ester 49 (7.00 g, 25 

mmol) in 500 mL of 3 M aqueous NaOH was deoxygenated and 

heated to 100 °C for 6 hours. The reaction mixture was cooled to 0 

°C, and 4 M aqueous HCl was added until the solution became acidic. The mixture was 

extracted with  EtOAc (2 × 500 mL), and the organic layer was washed with saturated 

NaCl solution (500 mL), dried over Na2SO4, and concentrated to give pure carboxylic 

acid 50 (6.25 g, 94% yield) as a yellow solid. 50: Rf = 0.46 (80% EtOAc / hexanes); IR 

(thin film): max = 3395, 3318, 2930, 1716, 1580, 1532 cm–1; 1H NMR (600 MHz, 

DMSO-d6):  = 13.02 (s, 1H), 11.91 (s, 1H), 7.19 (s, 1H), 7.01 (d, J = 2.1 Hz, 1H), 6.67 

(d, J = 1.1 Hz, 1H), 3.90 (s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 162.3, 154.2, 

138.5, 127.8, 117.7, 117.0, 109.1, 104.6, 103.4, 55.7 ppm; HRMS (ESI-QTOF): calcd for 

C10H9BrNO3
+ [M + H+]: 269.9766, found: 269.9747. 

 

Copper carboxylate 51. To a solution of carboxylic acid 50 

(1.00 g, 3.7 mmol, 2.0 equiv) and sodium carbonate (196 mg, 1.8 

mmol, 1.0 equiv) in 30 mL of water at 70 °C was added a 

solution of copper(II) sulfate pentahydrate (462 mg, 1.8 mmol, 1.0 equiv) in 30 mL of 

water. The reaction mixture was cooled to 0 °C, and the resultant precipitate was filtered 
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and dried in a vacuum desiccator over P2O5 to give copper carboxylate 51 in quantitative 

yield as an off-white solid. 

 

Indole 46. To a solution of carboxylic acid 50 (4.00 g, 15 mmol, 1.0 equiv) 

in 60 mL of distilled quinoline was added copper carboxylate 51 (0.90 g, 

1.5 mmol, 0.10 equiv). The reaction mixture was deoxygenated, then 

stirred in a preheated 215 °C silicone oil bath. (Caution: This temperature is above the 

flash point of mineral oil.) After heating for 5 hours, the reaction mixture was cooled to 

room temperature and diluted with 500 mL of 10% aqueous HCl solution. The mixture 

was extracted with  EtOAc (2 × 300 mL), and the combined organic layers was washed 

with water (200 mL) and saturated NaCl solution (400 mL), dried over Na2SO4, and 

concentrated to give a yellow solid. Flash column chromatography (10% EtOAc / 

hexanes) gave pure indole 46 (2.75 g, 68% yield based on 18.0 mmol theoretical yield) as 

a yellow solid. 46: Rf = 0.44 (20% EtOAc / hexanes); IR (thin film): max = 3424, 2940, 

2839, 1581, 1494 cm–1; 1H NMR (600 MHz, CDCl3):  = 8.13 (s, 1H), 7.18 (s, 1H), 7.08 

(dd, J = 2.9, 2.6 Hz, 1H), 6.65 (d, J = 1.3 Hz, 1H), 6.62 (ddd, J = 3.2, 2.1, 0.8 Hz, 1H), 

3.94 (s, 3H) ppm; 13C NMR (150 MHz, CDCl3):  = 153.7, 137.5, 123.1, 117.7, 115.8, 

107.6, 104.0, 100.3, 55.7 ppm; HRMS (ESI-QTOF): calcd for C9H9BrNO+ [M + H+]: 

225.9862, found: 225.9861. 

 

Aldehyde 52. To 8 mL of DMF at 0 °C was added freshly distilled 

POCl3 (0.80 mL, 8.7 mmol, 1.3 equiv). The reaction mixture was stirred 

for 15 min, and then a solution of indole 46 (1.50 g, 6.7 mmol, 1.0 equiv) 
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in 8 mL of DMF was added dropwise over 10 min. The resultant mixture was stirred for 

30 min at 0 °C, then heated to 40 °C for one hour. The reaction mixture was then cooled 

to 0 °C, and 1.0 M aqueous NaOH was added dropwise until the mixture became basic. 

The reaction mixture was heated to 100 °C for 30 min and then cooled to room 

temperature, diluted with water (300 mL), and extracted with  EtOAc (2 × 200 mL). The 

organic layer was washed with saturated NaCl solution (200 mL), dried over Na2SO4, and 

concentrated to give a white solid. Flash column chromatography (40% EtOAc / hexanes) 

gave pure aldehyde 52 (1.53 g, 91% yield) as a white solid. 52: Rf = 0.41 (50% EtOAc / 

hexanes); IR (thin film): max = 3226, 2958, 2862, 1644, 1516, 1437 cm–1; 1H NMR (600 

MHz, DMSO-d6):  = 12.29 (s, 1H), 10.27 (s, 1H), 8.06 (s, 1H), 7.31 (d, J = 1.4 Hz, 1H), 

6.89 (d, J = 1.1 Hz, 1H), 3.95 (s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 186.0, 

154.3, 138.2, 130.5, 118.2, 115.6, 114.7, 108.6, 105.9, 55.9 ppm; HRMS (ESI-QTOF): 

calcd for C10H9BrNO2
+ [M + H+]: 253.9811, found: 253.9806. 

 

Nitroalkene 53. To a solution of aldehyde 52 (800 mg, 3.2 mmol, 1.0 

equiv) in 25 mL of nitromethane at 23 °C was added ammonium 

acetate (192 mg, 3.2 mmol, 1.0 equiv). The reaction mixture was 

heated to 100 °C for 2 hours, then cooled to 0 °C for 12 hours. The reaction mixture was 

filtered, and the precipitate was washed with 25 mL of toluene. The combined organic 

layers was concentrated to give pure nitroalkene 53 (900 mg, 96% yield). 53: Rf = 0.46 

(50% EtOAc / hexanes); IR (thin film): max = 3297, 2960, 2885, 1598, 1513, 1461 cm–1; 

1H NMR (600 MHz, DMSO-d6):  = 12.14 (s, 1H), 8.50 (d, J = 13.4 Hz, 1H), 8.26 (s, 

1H), 8.07 (d, J = 13.4 Hz, 1H), 7.29 (dd, J = 0.6, 0.7 Hz, 1H), 6.97 (t, J = 1.3 Hz, 1H), 
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3.97 (s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 154.0, 139.1, 134.7, 132.9, 

132.4, 116.2, 114.4, 108.7, 107.9, 106.0, 56.0 ppm; HRMS (ESI-QTOF): calcd for 

C11H10BrN2O3
+ [M + H+]: 296.9869, found: 296.9871. 

 

Tryptamine 45. To a solution of nitroalkene 53 (850 mg 2.9 mmol, 

1.0 equiv) in 25 mL of THF at 0 °C was added LiAlH4 (651 mg, 17.2 

mmol, 6.0 equiv) portionwise over 15 min. Then reaction mixture was 

heated to 70 °C for 5 hours, then cooled to 0 °C. Excess LiAlH4 was quenched by 

dropwise addition of 0.25 M aqueous NaOH until no further gas evolution was observed. 

The reaction mixture was diluted with EtOAc (300 mL), filtered through Celite, and 

concentrated to give pure tryptamine 45 (755 mg, 98% yield) as a tan solid. 45: Rf = 0.23 

(77% CH2Cl2 / 20% MeOH / 3% Et3N); IR (thin film): max = 3422, 2930, 1610, 1579, 

1492 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 10.91 (s, 1H), 7.10 (d, J = 1.5 Hz, 1H), 

6.97 (s, 1H), 6.55 (d, J = 1.5 Hz, 1H), 3.84 (s, 3H), 2.81 (m, 2H), 2.76 (m, 2H) ppm; 13C 

NMR (150 MHz, DMSO-d6):  = 154.6, 138.2, 122.2, 116.0, 113.8, 113.2, 107.5, 102.4, 

55.5, 43.2, 30.9 ppm; HRMS (ESI-QTOF): calcd for C11H14BrN2O
+ [M + H+]: 269.0284, 

found: 269.0282. 

 

Amide 54. To a solution of tryptamine 45 (1.00 g, 3.73 mmol, 1.00 

equiv) in 2 mL of DMF was added 2-(trichloroacetyl)pyrrole (20, 805 

mg, 3.80 mmol, 1.02 equiv). The mixture was stirred for 6 hours, 

then diluted with CH2Cl2 (200 mL). The organic layer was washed 

with water (2 × 100 mL) and saturated NaCl solution (100 mL), then 
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dried over anhydrous MgSO4 and concentrated to give amide 54 contaminated with a 

trace of 2-(trichloroacetyl)pyrrole (3) as a brown solid (1.33 g, 98%). This material was 

used unpurified in the next reaction. An analytical sample was purified by flash column 

chromatography (60% EtOAc / hexanes) for characterization. 54: Rf = 0.45 (80% EtOAc 

/ hexanes); IR (thin film): max = 3400, 3230, 1655, 1561, 1493 cm–1; 1H NMR (600 

MHz, DMSO-d6):  = 11.37 (s, 1H), 10.92 (s, 1H), 7.97 (t, J = 5.7 Hz, 1H), 7.11 (d, J = 

1.4 Hz, 1H), 7.02 (d, J = 2.3 Hz, 1H), 6.82 (dt, J = 2.6, 1.4 Hz, 1H), 6.72 (ddd, J = 3.4, 

2.5, 1.5 Hz, 1H), 6.57 (d, J = 1.4 Hz, 1H), 6.05 (dt, J = 3.5, 2.4 Hz, 1H), 3.86 (s, 3H), 

3.48 (q, J = 6.9 Hz, 2H), 2.99 (t, J = 7.3 Hz, 2H) ppm; 13C NMR (150 MHz, DMSO-d6): 

 = 160.5, 154.6, 138.1, 126.5, 122.1, 121.0, 116.0, 113.9, 112.6, 109.6, 108.4, 107.5, 

102.5, 55.5, 26.8 ppm; HRMS (ESI-QTOF): calcd for C16H17BrN3O2
+ [M + H+]: 

362.0499, found: 362.0507. 

 

Alcohol 55. To a solution of unpurified amide 54 (363 mg, 1.0 mmol, 

1.0 equiv) in 20 mL of a THF:H2O mixture (9:1) at 0 °C was added 

DDQ (682 mg, 3.0 mmol, 3.0 equiv). The resultant red solution was 

stirred at 0 °C for 3 hours, then diluted with EtOAc (300 mL). The 

organic layer was washed with a saturated NaHCO3 solution (4 × 200 

mL) until the aqueous layer remained colorless. The organic layer was then dried over 

anhydrous MgSO4 and concentrated to give crude alcohol 55 as a brown solid. This 

material was used in next step without purification. 
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Ketoamide 44. To a solution of crude alcohol 55 (1.0 mmol 

theoretical, 1.0 equiv) in 5 mL of THF was added a solution of IBX 

(842 mg, 3.0 mmol, 3.0 equiv) in 5 mL of DMSO. The reaction 

mixture was stirred at 23 °C for 3 hours, then diluted with EtOAc 

(300 mL). The organic layer was washed with saturated NaHSO3 

solution (200 mL), water (300 mL), and saturated NaCl solution (300 mL), then dried 

over MgSO4 and concentrated to give a brown solid. Flash column chromatography (80% 

EtOAc / hexanes) gave pure ketoamide 55 (227 mg, 60% over two steps) as a brown 

solid. 55: Rf = 0.34 (80% EtOAc / hexanes); IR (thin film): max = 3413, 3210, 1635, 

1558, 1521, 1460 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 12.07 (s, 1H), 11.45 (s, 1H), 

8.20 (t, J = 5.8 Hz, 1H), 8.17 (d, J = 3.0 Hz, 1H), 6.87 (dt, J = 2.6, 1.5 Hz, 1H), 6.83 

(ddd, J = 3.8, 2.5, 1.5 Hz, 1H), 6.82 (d, J = 1.5 Hz, 1H), 6.11 (dt, J = 3.5, 2.4 Hz, 1H), 

4.63 (d, J = 5.8 Hz, 2H), 3.89 (s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 190.2, 

160.8, 153.9, 139.0, 132.6, 126.2, 121.3, 115.8, 115.7, 113.4, 110.1, 108.6, 108.1, 105.8, 

55.7, 47.4 ppm; HRMS (ESI-QTOF): calcd for C16H15BrN3O3
+ [M + H+]: 376.0291, 

found: 376.0280. 

 

Oxazole 43. To a solution of ketoamide 44 (200 mg, 0.53 mmol) in 2.5 

mL of pyridine at 0 °C was added POCl3 (0.5 mL) dropwise over 5 

minutes. The mixture was stirred at 0 °C for 1.5 hours, then at 23 °C for 

1.5 hours. The mixture was diluted with EtOAc (250 mL), washed with 

cold saturated NaHCO3 solution (250 mL), water (250 mL), and saturated NaCl solution 

(250 mL), then dried over MgSO4 and concentrated to give a brown solid. Flash column 
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chromatography (50% EtOAc / hexanes) gave pure oxazole 43 (134 mg, 71%) as a tan 

solid. 43: Rf = 0.27 (50% EtOAc / hexanes); IR (thin film): max = 3133, 2928, 2840, 

1618, 1605, 1494 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 11.77 (s, 1H), 11.69 (s, 1H), 

7.73 (d, J = 2.4 Hz, 1H), 7.34 (s, 1H), 7.24 (d, J = 1.5 Hz, 1H), 6.96 (dt, J = 2.6, 1.5 Hz, 

1H), 6.73 (d, J = 1.5 Hz, 1H), 6.72 (m, 1H), 6.20 (dt, J = 3.4, 2.4 Hz, 1H), 3.95 (s, 3H) 

ppm; 13C NMR (150 MHz, DMSO-d6):  = 154.2, 153.7, 145.7, 138.5, 123.3, 122.7, 

121.5, 120.0, 115.3, 112.7, 109.32, 109.3, 108.0, 104.1, 104.0, 55.6 ppm; HRMS (ESI-

QTOF): calcd for C16H13BrN3O2
+ [M + H+]: 358.0186, found: 358.0185. 

 

N-TIPS amine 57. To a solution of oxazole 43 (120 mg, 0.33 mmol, 

1.0 equiv)) in 1 mL DMF at 0 °C was added NaH (60 % dispersion in 

mineral oil, 40 mg, 1.0 mmol, 3.0 equiv). The mixture was stirred at 0 

°C for 20 minuties, then TIPSCl (215 L, 1.0 mmol, 3.0 equiv). The 

mixture was stirred at 23 °C for one hour. The compound was extracted in diethyl ether 

(50 mL). The organic layer was washed with water (50 mL), saturated solution of NaCl 

(50 mL) then dried over MgSO4 and concentrated to give a white solid. Flash column 

chromatography (2 % EtOAc / hexanes) gave 57 (200 mg, 89% yield, compound 

contained 9% TIPS-OH as impurity and was not fully characterized, yield was calculated 

from H NMR analysis) as a white solid. 57: Rf = 0.79 (20 % EtOAc / hexanes); IR (thin 

film): max = 2991, 2957, 1749, 1730, 1601, 1476, cm–1;HRMS (ESI-QTOF): calcd for 

C34H53BrN3O2Si2
+ [M + H+]: 670.2860, found: 670.2863. 


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 Iodo-oxazole 58. To a solution of TIPS amine 57 (150 mg, 0.24 

mmol, 1.0 equiv) in 1 mL of pyridine:THF (19:1) at –40 °C was added 

ICl (1.0 M in CH2Cl2, 192 L, 0.19 mmol, 0.8 equiv) drop by drop over 

30 min, then reaction was warmed to 0 °C over 3 hours. Again ICl (1.0 

M in CH2Cl2, 120 L, 0.12 mmol, 0.5 equiv) was added. After 5 min reaction mixture 

was quenched by addition of 10 wt % Na2SO3 (10 mL). The mixture was extracted with 

ether (25 mL). The organic layer was washed with water (25 mL) and saturated NaCl 

solution (25 mL), then dried over MgSO4 and concentrated to give crude iodooxazole 33 

as a yellow solid. 

 

Breitfussin A (17). To a solution of crude iodooxazole 58 (0.24 mmol 

theoretical, 1.0 equiv) in 2 mL of THF at 0 °C was added TBAF (1.0 M 

in THF, 768 L, 0.77 mmol, 3.2 equiv). The mixture was stirred at 0 

°C for 10 minutes, then diluted with ether (50 mL). The organic layer 

was washed with water (2 × 50 mL) and saturated NaCl solution (50 mL), then dried over 

MgSO4 and concentrated to give a tan solid. Flash column chromatography (25 % EtOAc 

/ hexanes) gave pure breitfussin A 17 (62 mg, 53 % yield over two steps) as a white solid. 

17: Rf = 0.67 (50 % EtOAc / hexanes); IR (thin film): max = 3463, 3167, 2952, 1528, 

1407 cm–1; 1H NMR (600 MHz, DMSO-d6):  = 11.95 (s, 1H), 11.76 (s, 1H), 7.66 (d, J = 

2.69 Hz, 1H), 7.29 (d, J = 1.47 Hz, 1H), 6.96 (1H), 6.75 (d, J = 1.5 Hz, 1H), 6.68 (m, 

1H), 6.20 (m, 1H), 3.95 (s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 157.4, 154.1, 

146.9, 138.4, 127.7, 122.8, 119.7, 115.7, 115.5, 110.4, 110.0, 108.4, 104.8, 101.2, 84.3, 
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56.2 ppm;  HRMS (ESI-QTOF): calcd for C16H12BrIN3O2
+ [M + H+]: 483.9258, found: 

483.9255. 

 

Breitfussin B (18). To a solution of oxazole 43 (25 mg, 0.07 mmol, 1.0 

equiv) in 2 mL of a THF:pyridine mixture (19:1) at 0 °C was added NBS 

(13 mg, 0.07 mmol, 1.0 equiv). The mixture was stirred at 0 °C for 30 

min, then diluted with EtOAc (25 mL). The organic phase was washed 

with water (25 mL) and saturated NaCl solution (25 mL), then dried over 

Na2SO4 and concentrated to give a white solid. Flash column chromatography (35% 

EtOAc / hexanes) gave pure bromopyrrole 18 (21 mg, 75% yield) as a white solid. 18: Rf 

= 0.66 (50% EtOAc / hexanes); IR (thin film): max = 3445, 3170, 2930, 1510, 1418 cm–1; 

1H NMR (600 MHz, DMSO-d6):  = 12.53 (s, 1H), 11.72 (s, 1H), 7.76 (d, J = 2.6 Hz, 

1H), 7.35 (s, 1H), 7.25 (d, J = 1.5 Hz, 1H), 6.73 (d, J = 1.5 Hz, 1H), 6.71 (d, J = 3.7 Hz, 

1H), 6.26 (d, J = 3.7 Hz, 1H), 3.95 (s, 3H) ppm; 13C NMR (150 MHz, DMSO-d6):  = 

153.6, 153.0, 146.0, 138.5, 123.6, 122.7, 121.8, 115.4, 112.7, 111.7, 110.7, 108.0, 104.0, 

103.9, 101.9, 55.6 ppm; HRMS (ESI-QTOF): calcd for C16H12Br2N3O2
+ [M + H+]: 

435.9291, found: 435.9287. 

 

Tribromide 60. (Attempted synthesis of bromooxazole 59.) To a 

solution of oxazole 43 (25 mg, 0.07 mmol, 1.0 equiv) in 2 mL of 

acetone at 0 °C was added NBS (12 mg, 0.07 mmol, 1.0 equiv). The 

mixture was stirred at 0 °C for 10 minutes, then extra NBS (7 mg, 

0.04 mmol, 0.5 equiv) was added and the mixture was stirred for an 
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additional 5 minutes at 0 °C. The reaction was quenched by addition of 10 wt% Na2SO3 

(5 mL), then extracted with EtOAc (25 mL). The organic phase was washed with water 

(25 mL) and saturated NaCl solution (25 mL), then dried over MgSO4 and concentrated 

to give a brown solid. Flash column chromatography (20% EtOAc / hexanes) gave pure 

tribromide 60 (5 mg, 14% yield) as a tan solid along with breitfussin B (18) (17 mg, 

55%). 60: Rf = 0.70 (50% EtOAc / hexanes); IR (thin film): max = 3453, 3167, 1534, 

1459 cm–1; 1H NMR (600 MHz, DMSO-d6):  12.38 (s, 1H), 11.83 (s, 1H), 7.67 (d, J = 

2.5 Hz, 1H), 7.28 (d, J = 1.5 Hz, 1H), 7.13 (t, J = 2.0 Hz, 1H), 6.74 (m, 2H), 3.78 (s, 3H) 

ppm; 13C NMR (150 MHz, DMSO-d6): = 153.9, 153.6, 142.4, 137.9, 127.2, 122.4, 

120.0, 115.4, 114.9, 113.2, 111.5, 108.0, 104.4, 99.6, 96.2, 55.8 ppm;  HRMS (ESI-

QTOF): calcd for C16H11Br3N3O2
+ [M + H+]: 514.8329, found: 514.8320. 

 

 

TLC Images: TLC plates were eluted using 35% EtOAc / hexanes and visualized under 

a 254 nm UV lamp. 

 

Figure S1. Time-dependent 2D TLC behavior of crude bromooxazole 59. 
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Figure S2. Time-dependent TLC behavior of a mixture of tribromide 60 and oxazole 43. 
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